LT4356-2_15 [Linear Systems]

Surge Stopper;
LT4356-2_15
型号: LT4356-2_15
厂家: Linear Systems    Linear Systems
描述:

Surge Stopper

文件: 总26页 (文件大小:241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT4356-1/LT4356-2  
Surge Stopper  
FEATURES  
DESCRIPTION  
TheLT®4356surgestopperprotectsloadsfromhighvoltage  
transients. It regulates the output during an overvoltage  
event, such as load dump in automobiles, by controlling  
the gate of an external N-channel MOSFET. The output is  
limited to a safe value thereby allowing the loads to con-  
tinue functioning. The LT4356 also monitors the voltage  
n
Stops High Voltage Surges  
n
Adjustable Output Clamp Voltage  
n
Overcurrent Protection  
n
Wide Operation Range: 4V to 80V  
n
Reverse Input Protection to –60V  
n
Low 7μA Shutdown Current, LT4356-1  
n
Adjustable Fault Timer  
Controls N-channel MOSFET  
drop between the V and SNS pins to protect against  
CC  
n
overcurrent faults. An internal amplifier limits the current  
sense voltage to 50mV. In either fault condition, a timer  
is started inversely proportional to MOSFET stress. If the  
timer expires, the FLT pin pulls low to warn of an impend-  
ing power down. If the condition persists, the MOSFET is  
turned off. After a cool down period, the GATE pin pulls  
up turning on the MOSFET again.  
n
Shutdown Pin Withstands –60V to 100V  
Fault Output Indication  
Guaranteed Operation to 125°C  
n
n
n
Auxiliary Amplifier for Level Detection Comparator or  
Linear Regulator Controller  
n
Available in (4mm × 3mm) 12-Pin DFN,  
10-Pin MSOP or 16-Pin SO Packages  
The auxiliary amplifier may be used as a voltage detection  
comparator or as a linear regulator controller driving an  
external PNP pass transistor.  
APPLICATIONS  
n
Back-to-back FETs can be used in lieu of a Schottky diode  
for reverse input protection, reducing voltage drop and  
powerloss. Ashutdownpinreducesthequiescentcurrent  
to less than 7μA for the LT4356-1 during shutdown. The  
LT4356-2 differs from the LT4356-1 during shutdown by  
reducing the quiescent current to 60μA and keeping alive  
the auxiliary amplifier for uses such as an undervoltage  
lockout or always-on regulator.  
Automotive/Avionic Surge Protection  
n
Hot Swap/Live Insertion  
n
High Side Switch for Battery Powered Systems  
Intrinsic Safety Applications  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
4A, 12V Overvoltage Output Regulator  
Overvoltage Protector Regulates Output at  
27V During Transient  
10mΩ  
IRLR2908  
V
OUT  
V
IN  
12V  
C
= 6.8μF  
= 500mA  
80V INPUT SURGE  
TMR  
I
LOAD  
10Ω  
102k  
V
IN  
V
SNS GATE OUT  
FB  
CC  
20V/DIV  
383k  
V
CC  
SHDN  
4.99k  
12V  
12V  
DC-DC  
27V ADJUSTABLE CLAMP  
100ms/DIV  
+
IN  
LT4356DE  
CONVERTER  
V
OUT  
20V/DIV  
100k  
EN  
SHDN  
GND  
UNDERVOLTAGE  
A
FLT  
FAULT  
OUT  
GND  
TMR  
4356 TA01b  
4356 TA01  
0.1μF  
4356fa  
1
LT4356-1/LT4356-2  
(Notes 1 and 2)  
ABSOLUTE MAXIMUM RATINGS  
V , SHDN ................................................ –60V to 100V  
Storage Temperature Range  
CC  
SNS............................. V – 30V or –60V to V + 0.3V  
DE12.................................................. –65°C to 125°C  
MS, SO .............................................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
CC  
CC  
OUT, A , FLT, EN...................................... –0.3V to 80V  
OUT  
GATE (Note 3).................................–0.3V to V  
+ 10V  
OUT  
+
FB, TMR, IN ................................................ –0.3V to 6V  
MS, SO ............................................................. 300°C  
+
A
, EN, FLT, IN ...................................................–3mA  
OUT  
Operating Temperature Range  
LT4356C................................................... 0°C to 70°C  
LT4356I................................................ –40°C to 85°C  
LT4356H ............................................ –40°C to 125°C  
PIN CONFIGURATION  
TOP VIEW  
+
TOP VIEW  
TMR  
FB  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IN  
+
TMR  
FB  
1
2
3
4
5
6
12 IN  
11  
10 GND  
NC  
TOP VIEW  
A
OUT  
NC  
A
OUT  
FB  
OUT  
1
2
3
4
5
10 TMR  
OUT  
GATE  
SNS  
9
8
7
6
GND  
EN  
OUT  
GATE  
NC  
NC  
13  
GATE  
SNS  
9
8
7
EN  
GND  
EN  
FLT  
V
CC  
SHDN  
FLT  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
V
SHDN  
CC  
SNS  
FLT  
V
SHDN  
CC  
T
= 125°C, θ = 120°C/W  
JA  
JMAX  
DE PACKAGE  
12-LEAD (4mm s 3mm) PLASTIC DFN  
= 125°C, θ = 43°C/W  
JA  
EXPOSED PAD (PIN 13) PCB GND CONNECTION OPTIONAL  
S PACKAGE  
16-LEAD PLASTIC SO  
= 150°C, θ = 100°C/W  
T
JMAX  
T
JMAX  
JA  
4356fa  
2
LT4356-1/LT4356-2  
ORDER INFORMATION  
LEAD FREE FINISH  
LT4356CDE-1#PBF  
LT4356IDE-1#PBF  
LT4356HDE-1#PBF  
LT4356CDE-2#PBF  
LT4356IDE-2#PBF  
LT4356HDE-2#PBF  
LT4356CMS-1#PBF  
LT4356IMS-1#PBF  
LT4356HMS-1#PBF  
LT4356CS-1#PBF  
LT4356IS-1#PBF  
LT4356HS-1#PBF  
LT4356CS-2#PBF  
LT4356IS-2#PBF  
LT4356HS-2#PBF  
LEAD BASED FINISH  
LT4356CDE-1  
TAPE AND REEL  
PART MARKING*  
43561  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LT4356CDE-1#TRPBF  
LT4356IDE-1#TRPBF  
LT4356HDE-1#TRPBF  
LT4356CDE-2#TRPBF  
LT4356IDE-2#TRPBF  
LT4356HDE-2#TRPBF  
LT4356CMS-1#TRPBF  
LT4356IMS-1#TRPBF  
LT4356HMS-1#TRPBF  
LT4356CS-1#TRPBF  
LT4356IS-1#TRPBF  
LT4356HS-1#TRPBF  
LT4356CS-2#TRPBF  
LT4356IS-2#TRPBF  
LT4356HS-2#TRPBF  
TAPE AND REEL  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
43561  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
43561  
43562  
43562  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
43562  
LTCNS  
LTCNS  
10-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTCNS  
10-Lead Plastic MSOP  
LT4356S-1  
LT4356S-1  
LT4356S-1  
LT4356S-2  
LT4356S-2  
LT4356S-2  
PART MARKING*  
43561  
16-Lead Plastic SO  
16-Lead Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
16-Lead Plastic SO  
16-Lead Plastic SO  
16-Lead Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
TEMPERATURE RANGE  
0°C to 70°C  
16-Lead Plastic SO  
PACKAGE DESCRIPTION  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
LT4356CDE-1#TR  
LT4356IDE-1#TR  
LT4356IDE-1  
43561  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LT4356HDE-1  
LT4356HDE-1#TR  
LT4356CDE-2#TR  
LT4356IDE-2#TR  
43561  
LT4356CDE-2  
43562  
LT4356IDE-2  
43562  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LT4356HDE-2  
LT4356HDE-2#TR  
LT4356CMS-1#TR  
LT4356IMS-1#TR  
LT4356HMS-1#TR  
LT4356CS-1#TR  
43562  
LT4356CMS-1  
LTCNS  
LT4356IMS-1  
LTCNS  
10-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LT4356HMS-1  
LTCNS  
10-Lead Plastic MSOP  
LT4356CS-1  
LT4356S-1  
LT4356S-1  
LT4356S-1  
LT4356S-2  
LT4356S-2  
LT4356S-2  
16-Lead Plastic SO  
LT4356IS-1  
LT4356CS-1#TR  
16-Lead Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LT4356HS-1  
LT4356HS-1#TR  
16-Lead Plastic SO  
LT4356CS-2  
LT4356CS-2#TR  
16-Lead Plastic SO  
LT4356IS-2  
LT4356IS-2#TR  
16-Lead Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
LT4356HS-2  
LT4356HS-2#TR  
16-Lead Plastic SO  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
4356fa  
3
LT4356-1/LT4356-2  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 12V unless otherwise noted.  
SYMBOL PARAMETER  
Operating Voltage Range  
Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
80  
UNITS  
V
l
l
V
4
CC  
I
CC  
V
V
V
= Float  
1
1.5  
mA  
CC  
SHDN  
+
= 0V, IN = 1.3V, LT4356-1  
LT4356I-1, LT4356C-1  
7
7
7
25  
30  
40  
μA  
μA  
μA  
SHDN  
l
l
LT4356H-1  
+
V
= 0V, IN = 1.3V, LT4356-2  
60  
60  
60  
70  
100  
250  
μA  
μA  
μA  
SHDN  
LT4356I-2, LT4356C-2  
LT4356H-2  
l
l
l
l
I
Reverse Input Current  
V
V
= V = –30V, SHDN Open  
0.3  
0.8  
1
2
mA  
mA  
R
SNS  
SNS  
CC  
= V = V  
= –30V  
CC  
SHDN  
l
l
GATE Pin Output High Voltage  
GATE Pin Pull-Up Current  
GATE Pin Pull-Down Current  
V
= 4V; (V  
– V  
GATE  
)
4.5  
10  
8
V
V
ΔV  
CC  
GATE  
OUT  
GATE  
80V ≥ V ≥ 8V; (V  
– V  
)
16  
CC  
OUT  
l
l
I
V
GATE  
V
GATE  
= 12V; V = 12V  
= 48V; V = 48V  
–4  
–4.5  
–23  
–30  
–36  
–50  
μA  
μA  
GATE(UP)  
GATE(DN)  
CC  
CC  
l
l
l
I
Overvoltage, V = 1.4V, V  
= 12V  
75  
5
1.5  
150  
10  
5
mA  
mA  
mA  
FB  
CC  
GATE  
Overcurrent, V – V  
= 120mV, V  
= 12V  
SNS  
GATE  
Shutdown Mode, V  
= 0V, V  
= 12V  
SHDN  
GATE  
l
l
V
FB Pin Servo Voltage  
V
V
= 12V; V  
= 12V; V  
= 12V, LT4356I, LT4356C  
= 12V, LT4356H  
1.225  
1.215  
1.25  
1.25  
1.275  
1.275  
V
V
FB  
GATE  
GATE  
OUT  
OUT  
l
I
FB  
FB Pin Input Current  
V
= 1.25V  
FB  
0.3  
1
μA  
l
l
l
l
Overcurrent Fault Threshold  
45  
42.5  
46  
50  
50  
51  
51  
55  
55  
56  
56  
mV  
mV  
mV  
mV  
ΔV  
ΔV  
ΔV  
ΔV  
ΔV  
= (V – V ), V = 12V, LT4356I, LT4356C  
CC SNS CC  
SNS  
SNS  
SNS  
SNS  
SNS  
= (V – V ), V = 12V, LT4356H  
CC  
SNS  
CC  
= (V – V ), V = 48V, LT4356I, LT4356C  
CC  
SNS  
CC  
43  
= (V – V ), V = 48V, LT4356H  
CC  
SNS  
CC  
l
l
I
I
SNS Pin Input Current  
V
= V = 12V to 48V  
5
10  
22  
μA  
SNS  
SNS  
CC  
FLT, EN Pins Leakage Current  
FLT, EN = 80V  
A = 80V  
OUT  
2.5  
4.5  
μA  
μA  
LEAK  
A
Pin Leakage Current  
OUT  
l
l
l
l
l
I
TMR Pin Pull-up Current  
V
TMR  
= 1V, V = 1.5V, (V – V ) = 0.5V  
–1.5  
–44  
–3.5  
–2.5  
–195  
–2.5  
–50  
–5.5  
–4.5  
–260  
–4  
μA  
μA  
μA  
μA  
μA  
TMR  
TMR  
FB  
CC  
OUT  
V
= 1V, V = 1.5V, (V – V ) = 75V  
–56  
FB  
CC  
OUT  
V
= 1.3V, V = 1.5V  
–8.5  
–6.5  
–315  
TMR  
FB  
SNS  
SNS  
V
= 1V, ΔV  
= 1V, ΔV  
= 60mV, (V – V ) = 0.5V  
TMR  
CC OUT  
V
TMR  
= 60mV, (V – V ) = 80V  
CC  
OUT  
l
TMR Pin Pull-down Current  
TMR Pin Thresholds  
1.5  
2.2  
2.7  
μA  
V
= 1V, V = 1V, ΔV = 0V  
SNS  
TMR  
FB  
l
l
V
TMR  
FLT From High to Low, V = 5V to 80V  
V
1.22  
0.48  
1.25  
0.5  
1.28  
0.52  
V
V
CC  
From Low to High, V = 5V to 80V  
CC  
GATE  
l
l
l
Early Warning Period  
From FLT going Low to GATE going Low, V = 5V to 80V  
80  
100  
1.25  
0.3  
120  
1.28  
1
mV  
V
ΔV  
CC  
TMR  
+
+
V
IN Pin Threshold  
1.22  
IN  
+
+
+
I
I
IN Pin Input Current  
V
= 1.25V  
μA  
IN  
OUT  
IN  
l
l
OUT Pin Input Current  
V
V
= V = 12V  
200  
6
300  
14  
μA  
mA  
OUT  
OUT  
CC  
= V = 12V, V  
= 0V  
CC  
SHDN  
l
OUT Pin High Threshold  
0.25  
0.5  
1.4  
0.7  
V
ΔV  
ΔV  
= V – V ; EN From Low to High  
OUT CC OUT  
OUT  
V
SHDN Pin Threshold  
V
= 12V to 48V  
0.6  
0.4  
1.7  
2.1  
V
V
SHDN  
CC  
l
l
l
V
FLT, EN Pins Output Low  
I
I
= 2mA  
= 0.1mA  
2
300  
8
800  
V
mV  
OL  
SINK  
SINK  
l
l
A
OUT  
Pin Output Low  
I
I
= 2mA  
= 0.1mA  
2
200  
8
400  
V
mV  
SINK  
SINK  
4356fa  
4
LT4356-1/LT4356-2  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 12V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
0.6  
–1  
TYP  
1.2  
–4  
MAX  
2.1  
–8  
4
UNITS  
V
l
l
l
l
V
SHDN Pin Float Voltage  
V
V
= 12V to 48V  
SHDN(FLT)  
CC  
I
t
t
SHDN Pin Current  
= 0V  
μA  
SHDN  
SHDN  
)
Overcurrent Turn Off Delay Time  
Overvoltage Turn Off Delay Time  
2
μs  
GATE From High to Low, ΔV  
= 0 120mV  
OFF(OC  
SNS  
0.25  
1
μs  
GATE From High to Low, V = 0 1.5V  
OFF(OV)  
FB  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: An internal clamp limits the GATE pin to a minimum of 10V above  
the OUT pin. Driving this pin to voltages beyond the clamp may damage  
the device.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to GND unless otherwise  
specified.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at VCC = 12V, TA = 25°C unless otherwise noted.  
ICC vs VCC  
ICC (Shutdown) vs VCC  
ICC (Shutdown) vs VCC  
1000  
800  
600  
400  
200  
0
120  
100  
80  
60  
40  
20  
0
60  
50  
40  
30  
20  
10  
0
LT4356-2  
LT4356-1  
+
IN = 1.3V  
0
10 20 30 40 50 60 70 80  
(V)  
0
10 20 30 40 50 60 70 80  
(V)  
0
10 20 30 40 50 60 70 80  
(V)  
V
V
CC  
V
CC  
CC  
4356 G02  
4356 G20  
4356 G01  
ICC (Shutdown) vs Temperature  
ICC (Shutdown) vs Temperature  
35  
30  
25  
20  
15  
10  
5
300  
250  
200  
150  
100  
50  
LT4356-1  
LT4356-2  
0
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4356 G03  
4356 G21  
4356fa  
5
LT4356-1/LT4356-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at VCC = 12V, TA = 25°C unless otherwise noted.  
GATE Pull-Up Current vs  
Temperature  
SHDN Current vs Temperature  
GATE Pull-Up Current vs VCC  
6
5
4
3
2
1
0
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
V
= 0V  
V
= V  
= 12V  
OUT  
SHDN  
GATE  
0
0
–50 –25  
0
25  
50  
75 100 125  
0
10 20 30 40 50 60 70 80  
(V)  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
V
TEMPERATURE (°C)  
CC  
4356 G04  
4356 G05  
4356 G06  
GATE Pull-Down Current vs  
Temperature  
GATE Pull-Down Current vs  
Temperature  
ΔVGATE vs IGATE  
220  
200  
180  
160  
140  
120  
100  
12  
10  
8
14  
12  
10  
8
OVERVOLTAGE CONDITION  
= 1.5V  
OVERCURRENT CONDITION  
ΔV = 120mV  
V
= 12V  
OUT  
V
FB  
SNS  
6
6
4
4
2
2
0
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
0
2
4
6
8
10 12 14 16  
(μA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
I
GATE  
4356 G07  
4356 G08  
4356 G09  
Overvoltage TMR Current vs  
(VCC – VOUT  
ΔVGATE vs Temperature  
ΔVGATE vs VCC  
)
48  
40  
32  
24  
16  
8
14  
12  
10  
8
16  
14  
12  
10  
8
OVERVOLTAGE CONDITION  
I
= –1μA  
GATE  
T
= 130°C  
A
V
V
= 5V  
= 1V  
OUT  
TMR  
V
= 8V  
CC  
T
= –45°C  
A
T
= 25°C  
A
6
6
V
= 4V  
CC  
4
4
2
2
I
= –1μA  
CC  
GATE  
OUT  
V
= V  
0
0
0
0
10 20 30 40 50 60 70 80  
– V (V)  
–50 –25  
0
25  
50  
75 100 125  
0
10 20 30 40 50 60 70 80  
(V)  
V
TEMPERATURE (°C)  
V
CC  
CC  
OUT  
4356 G12  
4356 G10  
4356 G11  
4356fa  
6
LT4356-1/LT4356-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at VCC = 12V, TA = 25°C unless otherwise noted.  
Warning Period  
TMR Current vs VCC  
TMR Pull-Down Current vs  
Temperature  
Overcurrent TMR Current vs  
(VCC – VOUT  
)
14  
12  
10  
8
3.0  
280  
240  
200  
160  
120  
80  
OVERVOLTAGE, EARLY  
WARNING PERIOD  
V
= 1V  
TMR  
OVERCURRENT CONDITION  
V
V
= 0V  
= 1V  
OUT  
TMR  
V
FB  
V
TMR  
= 1.5V  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 1.3V  
6
4
2
40  
0
0
0
10 20 30 40 50 60 70 80  
(V)  
–50 –25  
0
25  
50  
75 100 125  
0
10 20 30 40 50 60 70 80  
V
TEMPERATURE (°C)  
V
– V  
(V)  
OUT  
CC  
CC  
4356 G14  
4356 G15  
4356 G13  
Overvoltage Turn-Off Time vs  
Temperature  
Output Low Voltage vs Current  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
500  
400  
300  
200  
100  
0
OVERVOLTAGE CONDITION  
V
= 1.5V  
FB  
A
OUT  
FLT  
EN  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
–50 –25  
0
25  
50  
75 100 125  
CURRENT (mA)  
TEMPERATURE (°C)  
4356 G16  
4356 G17  
Overcurrent Turn-Off Time vs  
Temperature  
Reverse Current vs Reverse  
Voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
–20  
–15  
–10  
–5  
OVERCURRENT CONDITION  
ΔV = 120mV  
V
= SNS  
CC  
SNS  
0
–50 –25  
0
25  
50  
75 100 125  
–40  
0
–20  
–60  
–80  
TEMPERATURE (°C)  
V
(V)  
CC  
4356 G18  
4356 G19  
4356fa  
7
LT4356-1/LT4356-2  
PIN FUNCTIONS  
OUT: Output Voltage Sense Input. This pin senses the  
voltage at the source of the N-channel MOSFET and sets  
the fault timer current. When the OUT pin voltage reaches  
A
(DFN and SO Packages Only): Amplifier Output.  
OUT  
Opencollectoroutputoftheauxiliaryamplifier.Itiscapable  
of sinking up to 2mA from 80V. The negative input of the  
amplifier is internally connected to a 1.25V reference.  
0.7V away from V , the EN pin goes high impedance.  
CC  
SHDN: Shutdown Control Input. The LT4356 can be shut  
downtoalowcurrentmodebypullingtheSHDNpinbelow  
0.4V. Pull this pin above 2.1V or disconnect it and allow  
the internal current source to turn the part back on. The  
leakage current to ground at the pin should be limited to  
no more than 1μA if no pull up device is used to turn the  
part on. The SHDN pin can be pulled up to 100V or below  
GND by 60V without damage. In shutdown, the auxiliary  
amplifierturnsoffintheLT4356-1butcontinuesoperating  
in the LT4356-2.  
EN: Open-Collector Enable Output. The EN pin goes high  
impedance when the voltage at the OUT pin is above (V  
CC  
– 0.7V), indicating the external MOSFET is fully on. The  
state of the pin is latched until the OUT pin voltage resets  
at below 0.5V and goes back up above 2V. The internal  
NPN is capable of sinking up to 3mA of current from 80V  
to drive an LED or opto-coupler.  
Exposed Pad (DFN Package Only): Exposed pad may be  
left open or connected to device ground (GND).  
FB: Voltage Regulator Feedback Input. Connect this pin  
to the center tap of the output resistive divider connected  
between the OUT pin and ground. During an overvoltage  
condition, the GATE pin is servoed to maintain a 1.25V  
threshold at the FB pin. This pin is clamped internally to  
7V. Tie to GND to disable the OV clamp.  
SNS:CurrentSenseInput.Connectthispintotheoutputof  
thecurrentsenseresistor.Thecurrentlimitcircuitcontrols  
the GATE pin to limit the sense voltage between V and  
CC  
SNS pins to 50mV. At the same time the sense amplifier  
also starts a current source to charge up the TMR pin.  
This pin can be pulled below GND by up to 60V, though  
FLT: Open-Collector Fault Output. This pin pulls low  
after the voltage at the TMR pin has reached the fault  
threshold of 1.25V. It indicates the pass transistor is  
about to turn off because either the supply voltage has  
stayed at an elevated level for an extended period of  
time (voltage fault) or the device is in an overcurrent  
condition (current fault). The internal NPN is capable of  
sinking up to 3mA of current from 80V to drive an LED or  
opto-coupler.  
the voltage difference with the V pin must be limited to  
CC  
less than 30V. Connect to V if unused.  
CC  
TMR: Fault Timer Input. Connect a capacitor between this  
pin and ground to set the times for early warning, fault  
and cool down periods. The current charging up this pin  
during fault conditions depends on the voltage difference  
between the V and OUT pins. When V  
reaches 1.25V,  
CC  
TMR  
the FLT pin pulls low to indicate the detection of a fault  
condition. If the condition persists, the pass transistor  
GATE:N-ChannelMOSFETGateDriveOutput.TheGATEpin  
ispulledupbyaninternalchargepumpcurrentsourceand  
clamped to 14V above the OUT pin. Both voltage and cur-  
rent amplifiers control the GATE pin to regulate the output  
voltage and limit the current through the MOSFET.  
turns off when V  
reaches the threshold of 1.35V. As  
TMR  
soon as the fault condition disappears, the pull up current  
stops and a 2μA current starts to pull the TMR pin down.  
When V  
reaches the retry threshold of 0.5V, the GATE  
TMR  
pin pulls high turning back on the pass transistor.  
GND: Device Ground.  
V : Positive Supply Voltage Input. The positive supply  
CC  
input ranges from 4V to 80V for normal operation. It  
can also be pulled below ground potential by up to 60V  
during a reverse battery condition, without damaging the  
part. The supply current is reduced to 7μA with all the  
functional blocks off.  
+
IN (DFN and SO Packages Only): Positive Input of the  
Auxiliary Amplifier. This amplifier can be used as a level  
detection comparator with external hysteresis or linear  
regulatorcontrollinganexternalPNPtransistor. Thispinis  
clamped internally to 7V. Connect to ground if unused.  
4356fa  
8
LT4356-1/LT4356-2  
BLOCK DIAGRAM  
V
SNS  
GATE  
OUT  
CC  
14V  
+
50mV  
CHARGE  
PUMP  
FB  
+
+
VA  
IA  
1.25V  
SHDN  
FLT  
A
OUT  
OC  
OUT  
OV  
+
1.25V  
SHDN  
EN  
CONTROL  
LOGIC  
AUXILIARY  
AMPLIFIER  
RESTART  
GATEOFF FLT  
+
IN  
1.35V  
+
V
CC  
+
0.5V  
I
TMR  
+
2μA  
1.25V  
TMR  
GND  
4356 BD  
4356fa  
9
LT4356-1/LT4356-2  
OPERATION  
Some power systems must cope with high voltage surges  
of short duration such as those in automobiles. Load  
circuitry must be protected from these transients, yet  
high availability systems must continue operating during  
these events.  
The potential at the TMR pin starts decreasing as soon as  
the overvoltage condition disappears. When the voltage  
at the TMR pin reaches 0.5V the GATE pin begins rising,  
turning on the MOSFET. The FLT pin will then go to a high  
impedance state.  
The LT4356 is an overvoltage protection regulator that  
drives an external N-channel MOSFET as the pass transis-  
tor. It operates from a wide supply voltage range of 4V to  
80V. It can also be pulled below ground potential by up  
to 60V without damage. The low power supply require-  
ment of 4V allows it to operate even during cold cranking  
conditionsinautomotiveapplications. Theinternalcharge  
pump turns on the N-channel MOSFET to supply current  
to the loads with very little power loss. Two MOSFETs can  
be connected back to back to replace an inline Schottky  
diode for reverse input protection. This improves the ef-  
ficiency and increases the available supply voltage level  
to the load circuitry during cold crank.  
The fault timer allows the load to continue functioning  
duringshorttransienteventswhileprotectingtheMOSFET  
from being damaged by a long period of supply overvolt-  
age, such as a load dump in automobiles. The timer period  
varieswiththevoltageacrosstheMOSFET.Ahighervoltage  
corresponds to a shorter fault timer period, ensuring the  
MOSFET operates within its safe operating area (SOA).  
The LT4356 senses an overcurrent condition by monitor-  
ing the voltage across an optional sense resistor placed  
between the V and SNS pins. An active current limit  
CC  
circuit (IA) controls the GATE pin to limit the sense volt-  
age to 50mV. A current is also generated to start charging  
up the TMR pin. This current is about 5 times the current  
generated during an overvoltage event. The FLT pin pulls  
low when the voltage at the TMR pin reaches 1.25V and  
the MOSFET is turned off when it reaches 1.35V.  
Normally, the pass transistor is fully on, powering the  
loads with very little voltage drop. When the supply volt-  
age surges too high, the voltage amplifier (VA) controls  
the gate of the MOSFET and regulates the voltage at the  
source pin to a level that is set by the external resistive  
divider from the OUT pin to ground and the internal 1.25V  
reference. A current source starts charging up the capaci-  
tor connected at the TMR pin to ground. If the voltage at  
An auxiliary amplifier is provided with the negative input  
connected to an internal 1.25V reference. The output pull  
down device is capable of sinking up to 2mA of current  
allowing it to drive an LED or opto coupler. This amplifier  
can be configured as a linear regulator controller driving  
an external PNP transistor or a comparator function to  
monitor voltages.  
the TMR pin, V , reaches 1.25V, the FLT pin pulls low  
TMR  
to indicate impending turn-off due to the overvoltage  
condition. The pass transistor stays on until the TMR  
pin reaches 1.35V, at which point the GATE pin pulls low  
turning off the MOSFET.  
A shutdown pin turns off the pass transistor and reduces  
the supply current to less than 7μA for the LT4356-1. The  
supply current drops down to 60μA while keeping the  
internal reference and the auxiliary amplifier active for the  
LT4356-2 version during shutdown.  
4356fa  
10  
LT4356-1/LT4356-2  
APPLICATIONS INFORMATION  
The LT4356 can limit the voltage and current to the load  
circuitry during supply transients or overcurrent events.  
The total fault timer period should be set to ride through  
short overvoltage transients while not causing damage  
to the pass transistor. The selection of this N-channel  
MOSFET pass transistor is critical for this application.  
It must stay on and provide a low impedance path from  
the input supply to the load during normal operation and  
then dissipate power during overvoltage or overcurrent  
conditions.  
Overcurrent Fault  
The LT4356 features an adjustable current limit that  
protects against short circuits or excessive load current.  
During an overcurrent event, the GATE pin is regulated to  
limit the current sense voltage across the V and SNS  
pins to 50mV.  
CC  
Anovercurrentfaultoccurswhenthecurrentlimitcircuitry  
has been engaged for longer than the time-out delay set  
by the timer capacitor. The GATE pin is then immediately  
pulled low by a 10mA current to GND turning off the  
MOSFET. After the fault condition has disappeared and a  
cool down period has transpired, the GATE pin is allowed  
to pull back up and turn on the pass transistor.  
The following sections describe the overcurrent and the  
overvoltage faults, and the selection of the timer capacitor  
value based on the required warning time. The selection  
of the N-channel MOSFET pass transistor is discussed  
next. Auxiliary amplifier, reverse input, and the shutdown  
functionsarecoveredaftertheMOSFETselection.External  
component selection is discussed in detail in the Design  
Example section.  
Fault Timer  
The LT4356 includes an adjustable fault timer pin. Con-  
necting a capacitor from the TMR pin to ground sets the  
delay timer period before the MOSFET is turned off. The  
same capacitor also sets the cool down period before the  
MOSFETisallowedtoturnbackonafterthefaultcondition  
has disappeared.  
Overvoltage Fault  
The LTC4356 limits the voltage at the OUT pin during an  
overvoltage situation. An internal voltage amplifier regu-  
lates the GATE pin voltage to maintain a 1.25V threshold at  
the FB pin. During this period of time, the power MOSFET  
is still on and continues to supply current to the load. This  
allows uninterrupted operation during short overvoltage  
transient events.  
Once a fault condition, either overvoltage or overcurrent,  
is detected, a current source charges up the TMR pin. The  
current level varies depending on the voltage drop across  
thedrainandsourceterminalsofthepowerMOSFET(V ),  
which is typically from the V pin to the OUT pin. This  
scheme takes better advantage of the available Safe  
Operating Area (SOA) of the MOSFET than would a fixed  
timer current. The timer function operates down to V  
5V across the whole temperature range.  
DS  
CC  
When the voltage regulation loop is engaged for longer  
than the time-out period, set by the timer capacitor con-  
nectedfromtheTMRpintoground, anovervoltagefaultis  
detected. The GATE pin is pulled down to the OUT pin by a  
150mA current. After the fault condition has disappeared  
andacooldownperiodhastranspired, theGATEpinstarts  
to pull high again. This prevents the power MOSFET from  
being damaged during a long period of overvoltage, such  
as during load dump in automobiles.  
=
CC  
4356fa  
11  
LT4356-1/LT4356-2  
APPLICATIONS INFORMATION  
Fault Timer Current  
When the voltage at the TMR pin, V , reaches the 1.25V  
TMR  
threshold, the FLT pin pulls low to indicate the detection  
of a fault condition and provide warning to the load of  
the impending power loss. In the case of an overvoltage  
fault, the timer current then switches to a fixed 5μA. The  
interval between FLT asserting low and the MOSFET turn-  
ing off is given by:  
The timer current starts at around 2μA with 0.5V or less  
of V , increasing linearly to 50μA with 75V of V dur-  
DS  
DS  
ing an overvoltage fault (Figure 1). During an overcurrent  
fault, it starts at 4μA with 0.5V or less of V but increases  
DS  
to 260μA with 80V across the MOSFET (Figure 2). This  
arrangement allows the pass transistor to turn off faster  
duringanovercurrentevent,sincemorepowerisdissipated  
during this condition. Refer to the Typical Performance  
Characteristics section for the timer current at different  
CTMR • 100mV  
tWARNING  
=
5μA  
V
in both overvoltage and overcurrent events.  
DS  
V
TMR(V)  
I
= 5μA  
I
= 5μA  
TMR  
TMR  
1.35  
1.25  
V
TMR  
= 75V  
= 50μA)  
DS  
(I  
V
TMR  
= 10V  
= 8μA)  
DS  
(I  
0.50  
TIME  
t
t
WARNING  
= 20ms/μF  
FLT  
= 15ms/μF  
t
= 93.75ms/μF  
t
WARNING  
= 20ms/μF  
FLT  
TOTAL FAULT TIMER = t + t  
4356 F01  
FLT WARNING  
Figure 1. Overvoltage Fault Timer Current  
V
TMR(V)  
1.35  
1.25  
V
TMR  
= 80V  
DS  
V
TMR  
= 10V  
= 35μA)  
(I  
= 260μA)  
DS  
(I  
0.50  
TIME  
t
WARNING  
= 0.38ms/μF  
t
FLT  
= 2.88ms/μF  
t
= 21.43ms/μF  
FLT  
t
WARNING  
4356 F02  
= 2.86ms/μF  
TOTAL FAULT TIMER = t + t  
FLT WARNING  
Figure 2. Overcurrent Fault Timer Current  
4356fa  
12  
LT4356-1/LT4356-2  
APPLICATIONS INFORMATION  
This fixed early warning period allows the systems to per-  
formnecessarybackuporhouse-keepingfunctionsbefore  
voltage N-channel MOSFETs. For systems with V less  
than 8V, a logic level MOSFET is required since the gate  
drive can be as low as 4.5V.  
CC  
the power supply is cut off. After V  
crosses the 1.35V  
TMR  
threshold, the pass transistor turns off immediately. Note  
that during an overcurrent event, the timer current is not  
The SOA of the MOSFET must encompass all fault condi-  
tions. In normal operation the pass transistor is fully on,  
dissipating very little power. But during either overvoltage  
or overcurrent faults, the GATE pin is servoed to regu-  
late either the output voltage or the current through the  
MOSFET. Large current and high voltage drop across the  
MOSFET can coexist in these cases. The SOA curves of  
the MOSFET must be considered carefully along with the  
selection of the fault timer capacitor.  
reduced to 5μA after V  
has reached 1.25V threshold,  
TMR  
since it would lengthen the overall fault timer period and  
cause more stress on the power MOSFET.  
As soon as the fault condition has disappeared, a 2μA  
current starts to discharge the timer capacitor to ground.  
WhenV  
reachesthe0.5Vthreshold,theinternalcharge  
TMR  
pump starts to pull the GATE pin high, turning on the  
MOSFET. The TMR pin is then actively regulated to 0.5V  
until the next fault condition appears. The total cool down  
timer period is given by:  
Transient Stress in the MOSFET  
During an overvoltage event, the LT4356 drives a series  
passMOSFETtoregulatetheoutputvoltageatanacceptable  
level.Theloadcircuitrymaycontinueoperatingthroughout  
this interval, but only at the expense of dissipation in the  
MOSFET pass device. MOSFET dissipation or stress is a  
function of the input voltage waveform, regulation voltage  
and load current. The MOSFET must be sized to survive  
this stress.  
CTMR • 0.85V  
tCOOL  
=
2μA  
MOSFET Selection  
The LT4356 drives an N-channel MOSFET to conduct the  
load current. The important features of the MOSFET are  
on-resistanceR  
(BR)DSS  
,themaximumdrain-sourcevoltage  
DS(ON)  
Most transient event specifications use the model shown  
in Figure 3. The idealized waveform comprises a linear  
V
, the threshold voltage, and the SOA.  
The maximum allowable drain-source voltage must be  
higher than the supply voltage. If the output is shorted  
to ground or during an overvoltage event, the full supply  
voltage will appear across the MOSFET.  
ramp of rise time t, reaching a peak voltage of V and  
r
PK  
exponentially decaying back to V with a time constant  
IN  
of t. A common automotive transient specification has  
constants of t = 10μs, V = 80V and τ = 1ms. A surge  
r
PK  
condition known as “load dump” has constants of t =  
r
The gate drive for the MOSFET is guaranteed to be more  
5ms, V = 60V and τ = 200ms.  
PK  
than10Vandlessthan16VforthoseapplicationswithV  
CC  
higher than 8V. This allows the use of standard threshold  
V
PK  
τ
V
IN  
t
r
4356 F03  
Figure 3. Prototypical Transient Waveform  
4356fa  
13  
LT4356-1/LT4356-2  
APPLICATIONS INFORMATION  
V
MOSFET stress is the result of power dissipated within  
the device. For long duration surges of 100ms or more,  
stress is increasingly dominated by heat transfer; this is  
a matter of device packaging and mounting, and heatsink  
thermal mass. This is analyzed by simulation, using the  
MOSFET thermal model.  
PK  
T
V
REG  
V
IN  
t
r
Forshortdurationtransientsoflessthan100ms, MOSFET  
survival is increasingly a matter of safe operating area  
(SOA), an intrinsic property of the MOSFET. SOA quanti-  
4356 F04  
Figure 4. Safe Operating Area Required to Survive Prototypical  
Transient Waveform  
fies the time required at any given condition of V and  
DS  
I to raise the junction temperature of the MOSFET to its  
Typically V  
≈ V and τ >> t simplifying the above to  
IN r  
D
REG  
rated maximum. MOSFET SOA is expressed in units of  
1
P2t = ILOAD V – V  
2 τ  
(W2s)  
2
2
watt-squared-seconds(P t).Thisgureisessentiallycon-  
(
)
PK  
REG  
2
stant for intervals of less than 100ms for any given device  
type, and rises to infinity under DC operating conditions.  
Destruction mechanisms other than bulk die temperature  
distort the lines of an accurately drawn SOA graph so that  
For the transient conditions of V = 80V, V = 12V, V  
PK  
IN  
REG  
2
= 16V, t = 10μs and τ = 1ms, and a load current of 3A, P t  
r
2
is18.4W s—easilyhandledbyaMOSFETinaD-pakpack-  
2
P t is not the same for all combinations of I and V .  
2
D
DS  
age. The P t of other transient waveshapes is evaluated by  
2
In particular P t tends to degrade as V approaches the  
DS  
integrating the square of MOSFET power versus time.  
maximum rating, rendering some devices useless for  
absorbing energy above a certain voltage.  
Calculating Short-Circuit Stress  
SOAstressmustalsobecalculatedforshort-circuitcondi-  
Calculating Transient Stress  
2
tions. Short-circuit P t is given by:  
To select a MOSFET suitable for any given application, the  
SOA stress must be calculated for each input transient  
whichshallnotinterruptoperation.Itisthenasimplematter  
to chose a device which has adequate SOA to survive the  
maximumcalculatedstress.P tforaprototypicaltransient  
waveform is calculated as follows (Figure 4).  
2
2
2
P t = (V ΔV /R ) • t  
(W s)  
IN  
SNS SNS  
TMR  
where, ΔV  
is the SENSE pin threshold, and t  
is the  
TMR  
SNS  
overcurrent timer interval.  
2
For V = 14.7V, V  
= 50mV, R  
= 12mΩ and C  
SNS TMR  
IN  
SNS  
2
2
= 100nF, P t is 6.6W s—less than the transient SOA  
calculated in the previous example. Nevertheless, to  
accountforcircuittolerancesthisgureshouldbedoubled  
Let  
a = V  
– V  
IN  
IN  
REG  
2
to 13.2W s.  
b = V – V  
PK  
(V = Nominal Input Voltage)  
IN  
Limiting Inrush Current and GATE Pin Compensation  
Then  
TheLT4356limitstheinrushcurrenttoanyloadcapacitance  
by controlling the GATE pin voltage slew rate. An external  
capacitor can be connected from GATE to ground to slow  
down the inrush current further at the expense of slower  
turn-off time. The gate capacitor is set at:  
3
ba  
1
3
(
1
2
b
a
)
+ τ 2a2 ln + 3a2 +b2 4ab  
2
P2t = ILOAD  
tr  
b
IGATE(UP)  
C1 =  
CL  
I
INRUSH  
4356fa  
14  
LT4356-1/LT4356-2  
APPLICATIONS INFORMATION  
R
The LTC4356 does not need extra compensation compo-  
nents at the GATE pin for stability during an overvoltage or  
overcurrent event. With transient input voltage step faster  
than 5V/μs, a gate capacitor, C1, to ground is needed to  
prevent self enhancement of the N-channel MOSFET.  
LIM  
2N2905A OR  
*4.7Ω  
BCP53  
2.5V OUTPUT  
≈ 150mA MAX  
INPUT  
10μF  
47nF  
*OPTIONAL FOR  
CURRENT LIMIT  
R6  
100k  
D1*  
BAV99  
R4R5  
R5  
VOUT 1.25  
11  
The extra gate capacitance slows down the turn off time  
during fault conditions and may allow excessive current  
duringanoutputshortevent.Anextraresistor,R1,inseries  
with the gate capacitor can improve the turn off time. A  
diode, D1, should be placed across R1 with the cathode  
connected to C1 as shown in Figure 5.  
R4  
A
OUT  
0.7  
RLIM  
249k  
ILIM  
z
LT4356S  
12  
+
IN  
4356 F06  
R5  
249k  
Figure 6. Auxiliary LDO Output with Optional Current Limit  
Q1  
Reverse Input Protection  
D1  
A blocking diode is commonly employed when reverse  
input potential is possible, such as in automotive applica-  
tions. This diode causes extra power loss, generates heat,  
and reduces the available supply voltage range. During  
cold crank, the extra voltage drop across the diode is  
particularly undesirable.  
IN4148W  
R3  
R1  
C1  
GATE  
LT4356S  
The LT4356 is designed to withstand reverse voltage  
4356 F05  
without damage to itself or the load. The V , SNS, and  
CC  
Figure 5  
SHDN pins can withstand up to 60V of DC voltage below  
the GND potential. Back-to-back MOSFETs must be used  
to eliminate the current path through their body diodes  
(Figure 7). Figure 8 shows the approach with a P-Channel  
MOSFET in place of Q2.  
Auxiliary Amplifier  
An uncommitted amplifier is included in the LT4356 to  
provide flexibility in the system design. With the negative  
input connected internally to the 1.25V reference, the am-  
plifier can be connected as a level detect comparator with  
R
Q2  
IRLR2908  
Q1  
IRLR2908  
SNS  
10mΩ  
V
V
OUT  
IN  
12V  
12V, 3A  
CLAMPED  
AT 16V  
external hysteresis. The open collector output pin, A  
,
OUT  
D2*  
SMAJ58CA  
R4  
10Ω  
R3  
10Ω  
R5  
1M  
Q3  
2N3904  
is capable of driving an opto or LED. It can also interface  
with the system via a pull-up resistor to a supply voltage  
up to 80V. Another use is to implement undervoltage  
lockout, as shown in the typical application “Overvoltage  
Regulator with Undervoltage Lockout.” In shutdown, the  
auxiliary amplifier turns off in the LT4356-1 but continues  
operating in the LT4356-2.  
R1  
59k  
D1  
1N4148  
R7  
10k  
5
4
3
SNS  
GATE OUT  
FB  
6
2
V
CC  
R2  
4.99k  
LT4356S  
The amplifier can also be configured as a low dropout  
linearregulatorcontroller. WithanexternalPNPtransistor,  
such as 2N2905A, it can supply up to 100mA of current  
with only a few hundred mV of dropout voltage. Current  
limit can be easily included by adding two diodes and one  
resistor (Figure 6).  
7
11  
12  
SHDN  
8
9
A
FLT  
OUT  
+
IN  
EN  
4356 F07  
GND  
10  
TMR  
1
C
TMR  
0.1μF  
*DIODES INC.  
Figure 7. Overvoltage Regulator with N-channel MOSFET  
Reverse Input Protection  
4356fa  
15  
LT4356-1/LT4356-2  
APPLICATIONS INFORMATION  
R
Q2  
Si4435  
Q1  
IRLR2908  
SNS  
10mΩ  
V
V
OUT  
IN  
12V  
D2*  
SMAJ58CA  
12V, 3A  
CLAMPED  
AT 16V  
D1  
1N5245  
15V  
R3  
10Ω  
R6  
10k  
R1  
59k  
5
4
3
SNS  
GATE OUT  
6
2
V
FB  
CC  
R2  
4.99k  
LT4356S  
7
11  
12  
SHDN  
8
9
A
FLT  
OUT  
+
IN  
EN  
GND  
10  
TMR  
1
4356 F08  
C
TMR  
*DIODES INC.  
0.1μF  
Figure 8. Overvoltage Regulator with P-Channel MOSFET  
Reverse Input Protection  
Shutdown  
A total bulk capacitance of at least 22μF low ESR electro-  
lytic is required close to the source pin of MOSFET Q1. In  
addition, the bulk capacitance should be at least 10 times  
larger than the total ceramic bypassing capacitor on the  
input of the DC/DC converter.  
The LT4356 can be shut down to a low current mode when  
the voltage at the SHDN pin goes below the shutdown  
threshold of 0.6V. The quiescent current drops to 7μA for  
the LT4356-1 and 60μA for the LT4356-2 which leaves the  
auxiliary amplifier on.  
The SHDN pin can be pulled up to V or below GND by  
R
CC  
Q1  
SNS  
10mΩ  
IRLR2908  
up to 60V without damaging the pin. Leaving the pin open  
allows an internal current source to pull it up and turn  
on the part while clamping the pin to 2.5V. The leakage  
current at the pin should be limited to no more than 1μA  
if no pull up device is used to help turn it on.  
V
IN  
C *  
L
22μF  
D2  
SMAJ58A  
R3  
10Ω  
R1  
59k  
5
4
3
SNS GATE OUT  
6
V
CC  
2
Supply Transient Protection  
FB  
R4  
383k  
7
V
CC  
SHDN  
R2  
4.99k  
The LT4356 is guaranteed to be safe from damage with  
supply voltages up to 100V. Nevertheless, voltage tran-  
sients above 100V may cause permanent damage. During  
ashort-circuitcondition,thelargechangeincurrentowing  
through power supply traces and associated wiring can  
cause inductive voltage transients which could exceed  
100V. To minimize the voltage transients, the power trace  
parasitic inductance should be minimized by using wide  
traces. A small surge suppressor, D2, in Figure 9, at the  
input will clamp the voltage spikes.  
12  
DC-DC  
CONVERTER  
+
IN  
LT4356S  
R5  
9
8
100k  
EN  
SHDN  
GND  
11  
UNDERVOLTAGE  
A
FLT  
FAULT  
OUT  
GND  
10  
TMR  
4356 F09  
1
*SANYO 25CE22GA  
C
TMR  
47nF  
Figure 9. Overvoltage Regulator with Low-Battery Detection  
4356fa  
16  
LT4356-1/LT4356-2  
APPLICATIONS INFORMATION  
Layout Considerations  
Next calculate the sense resistor, R , value:  
SNS  
To achieve accurate current sensing, Kelvin connection  
50mV 50mV  
RSNS  
=
=
= 10mΩ  
to the current sense resistor (R  
in Figure 9) is recom-  
SNS  
ILIM  
5A  
mended. The minimum trace width for 1oz copper foil is  
0.02" per amp to ensure the trace stays at a reasonable  
temperature. 0.03" per amp or wider is recommended.  
Note that 1oz copper exhibits a sheet resistance of about  
530μΩ/square.Smallresistancescancauselargeerrorsin  
highcurrentapplications.Noiseimmunitywillbeimproved  
significantly by locating resistive dividers close to the pins  
C
is then chosen for 1ms of early warning time:  
TMR  
1ms • 5μA  
CTMR  
=
= 50nF  
100mV  
The closest standard value for C  
is 47nF.  
TMR  
Finally,calculateR4andR5forthe6Vlowbatterythreshold  
detection:  
with short V and GND traces.  
CC  
Design Example  
1.25V • R4 + R5  
(
)
6V =  
As a design example, take an application with the follow-  
R5  
ing specifications: V = 8V to 14V DC with transient up  
CC  
to 80V, V  
≤ 16V, current limit (I ) at 5A, low battery  
Choose 100k for R5.  
OUT  
LIM  
detection at 6V, and 1ms of overvoltage early warning  
(Figure 9).  
6V – 1.25V • R5  
(
)
R4 =  
= 380k  
1.25V  
First, calculate the resistive divider value to limit V  
16V during an overvoltage event:  
to  
OUT  
Select 383k for R4.  
1.25V • R1 + R2  
(
)
=16V  
The pass transistor, Q1, should be chosen to withstand  
VREG  
=
the output short condition with V = 14V.  
R2  
CC  
The total overcurrent fault time is:  
Set the current through R1 and R2 during the overvoltage  
condition to 250μA.  
47nF • 0.85V  
tOC  
=
= 0.878ms  
45.5μA  
1.25V  
R2 =  
= 5k  
250μA  
Choose 4.99k for R2.  
16V – 1.25V • R2  
The power dissipation on Q1 equals to:  
14V • 50mV  
P =  
= 70W  
10mΩ  
(
)
R1 =  
= 58.88k  
1.25V  
The closest standard value for R1 is 59k.  
These conditions are well within the Safe Operating Area  
of IRLR2908.  
4356fa  
17  
LT4356-1/LT4356-2  
TYPICAL APPLICATIONS  
Wide Input Range 5V to 28V Hot Swap  
with Undervoltage Lockout  
R
Q1  
SNS  
20mΩ  
SUD50N03-10  
V
V
OUT  
IN  
100μF  
R6  
118k  
R3  
10Ω  
C1  
47nF  
V
SNS GATE OUT  
FB  
CC  
SHDN  
A
OUT  
+
IN  
LT4356DE-1  
R7  
49.9k  
FLT  
EN  
GND  
TMR  
4356 TA02  
C
TMR  
1μF  
24V Overvoltage Regulator Withstands 150V at VIN  
Q1  
IRF640  
V
V
OUT  
IN  
24V  
CLAMPED AT 32V  
R9  
1k  
1W  
R3  
10Ω  
R1  
118k  
5
4
3
SNS  
GATE  
LT4356DE  
TMR  
OUT  
6
2
V
FB  
CC  
D2*  
SMAT70A  
R2  
4.99k  
7
8
9
SHDN  
FLT  
EN  
GND  
10  
4356 TA03  
1
C
TMR  
*DIODES INC.  
0.1μF  
4356fa  
18  
LT4356-1/LT4356-2  
TYPICAL APPLICATIONS  
Overvoltage Regulator with Undervoltage Lockout  
R
Q1  
IRLR2908  
SNS  
20mΩ  
V
OUT  
V
IN  
CLAMPED AT 16V  
D2*  
R6  
280k  
R4  
1M  
SMAJ58A  
R3  
10Ω  
R1  
59k  
V
SNS GATE OUT  
FB  
CC  
R5  
SHDN  
1M  
R2  
4.99k  
A
OUT  
+
UV RISING = 5.04V  
IN  
LT4356DE-2  
R7  
100k  
FLT  
EN  
GND  
TMR  
*DIODES INC.  
4356 TA04  
C
TMR  
0.1μF  
Overvoltage Regulator with Low Battery Detection and Output Keep Alive During Shutdown  
1k  
0.5W  
R
SNS  
Q1  
IRLR2908  
V
10mΩ  
OUT  
V
IN  
12V, 4A  
12V  
CLAMPED AT 16V  
D2*  
SMAJ58A  
R3  
D1  
10Ω  
Q2  
1N4746A  
18V  
R4  
402k  
VN2222  
1W  
5
SNS  
4
3
OUT  
R1  
294k  
GATE  
6
V
2
CC  
FB  
R2  
24.9k  
V
DD  
R6  
47k  
LT4356DE  
12  
7
11  
8
+
IN  
A
LBO  
OUT  
R5  
105k  
SHDN  
FLT  
9
EN  
GND  
10  
TMR  
1
*DIODES INC.  
4356 TA05  
C
TMR  
0.1μF  
4356fa  
19  
LT4356-1/LT4356-2  
TYPICAL APPLICATIONS  
2.5A, 48V Hot Swap with Overvoltage Output Regulation at 72V and UV Shutdown at 35V  
R
Q1  
FDB3632  
SNS  
15mΩ  
V
V
OUT  
IN  
48V  
48V  
2.5A  
R4  
140k  
R6  
100k  
D2*  
SMAT70A  
R3  
10Ω  
C
L
300μF  
C1  
6.8nF  
6
5
4
3
OUT  
D1  
1N4714  
BV = 33V  
V
SNS GATE  
R7  
CC  
1M  
12  
2
+
IN  
7
SHDN  
R5  
4.02k  
R8  
47k  
R1  
226k  
LT4356DE  
FB  
R2  
4.02k  
8
9
FLT  
11  
EN  
A
PWRGD  
OUT  
GND  
10  
TMR  
1
*DIODES INC.  
4356 TA06  
C
TMR  
0.1μF  
2.5A, 28V Hot Swap with Overvoltage Output Regulation at 36V and UV Shutdown at 15V  
R
Q1  
FDB3632  
SNS  
15mΩ  
V
V
OUT  
IN  
28V  
28V  
2.5A  
R4  
113k  
R6  
27k  
D2*  
SMAT70A  
R3  
10Ω  
C
L
300μF  
C1  
6.8nF  
6
5
4
3
OUT  
D1  
1N4700  
BV = 13V  
V
SNS GATE  
R7  
CC  
1M  
12  
2
+
IN  
7
SHDN  
R5  
4.02k  
R8  
47k  
R1  
110k  
LT4356DE  
FB  
R2  
4.02k  
8
9
FLT  
11  
EN  
A
PWRGD  
OUT  
GND  
10  
TMR  
1
*DIODES INC.  
4356 TA07  
C
TMR  
0.1μF  
4356fa  
20  
LT4356-1/LT4356-2  
TYPICAL APPLICATIONS  
Overvoltage Regulator with Reverse Input Protection Up to –80V  
R
Q2  
IRLR2908  
Q1  
IRLR2908  
SNS  
10mΩ  
V
V
OUT  
IN  
12V  
12V, 3A  
CLAMPED  
AT 16V  
D2*  
SMAJ58CA  
R4  
10Ω  
R3  
10Ω  
R5  
1M  
Q3  
2N3904  
6
5
SNS  
4
3
R1  
59k  
V
GATE OUT  
FB  
CC  
D1  
1N4148  
2
R7  
10k  
R2  
4.99k  
D3**  
IN4148  
LT4356DE  
7
SHDN  
11  
12  
8
9
A
FLT  
OUT  
+
IN  
EN  
GND  
10  
TMR  
4356 TA08  
1
*
DIODES INC.  
C
TMR  
** OPTIONAL COMPONENT FOR  
REDUCED STANDBY CURRENT  
0.1μF  
4356fa  
21  
LT4356-1/LT4356-2  
PACKAGE DESCRIPTION  
DE/UE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695 Rev D)  
0.70 0.05  
3.30 0.05  
3.60 0.05  
2.20 0.05  
1.70 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
2.50 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.40 0.10  
4.00 0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.05  
TYP  
3.30 0.10  
3.00 0.10  
(2 SIDES)  
1.70 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1 NOTCH  
R = 0.20 OR  
0.35 × 45°  
CHAMFER  
(UE12/DE12) DFN 0806 REV D  
6
1
0.25 0.05  
0.75 0.05  
0.200 REF  
0.50 BSC  
2.50 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
4356fa  
22  
LT4356-1/LT4356-2  
PACKAGE DESCRIPTION  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
0.889 0.127  
(.035 .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
(.0197)  
0.497 0.076  
(.0196 .003)  
0.50  
0.305 0.038  
(.0120 .0015)  
TYP  
10 9  
8
7 6  
BSC  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
GAUGE PLANE  
1
2
3
4 5  
0.53 0.152  
(.021 .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 0.0508  
(.004 .002)  
0.50  
(.0197)  
BSC  
MSOP (MS) 0307 REV E  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
4356fa  
23  
LT4356-1/LT4356-2  
PACKAGE DESCRIPTION  
S Package  
16-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.386 – .394  
(9.804 – 10.008)  
.045 p.005  
NOTE 3  
.050 BSC  
16  
N
15  
14  
13  
12  
11  
10  
9
N
1
.245  
MIN  
.160 p.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
8
.030 p.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
6
7
1
4
.010 – .020  
(0.254 – 0.508)  
s 45o  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0o – 8o TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S16 0502  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4356fa  
24  
LT4356-1/LT4356-2  
REVISION HISTORY (Revision history begins at Rev A)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
05/10 Revised Features and Description  
1
Added parameters to V and updated Max value for V  
in the Electrical Characteristics section  
4, 5  
8
OL  
SHDN(FLT)  
Revised Pin Functions section  
Replaced Figure 6 and made text edits in the Operation and Applications Information sections  
Updated drawings in the Typical Applications section  
10-17  
19, 21  
4356fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LT4356-1/LT4356-2  
TYPICAL APPLICATION  
Overvoltage Regulator with Linear Regulator Up to 100mA  
Q2  
2N2905A  
2.5V, 100mA  
C5  
10μF  
R
Q1  
IRLR2908  
SNS  
10mΩ  
V
IN  
12V  
V
OUT  
12V, 3A  
CLAMPED AT 16V  
D2*  
SMAJ58A  
R3  
R1  
10Ω  
59k  
5
4
3
SNS  
GATE  
OUT  
R6  
100k  
6
2
V
A
FB  
CC  
R2  
4.99k  
R4  
249k  
C3  
47nF  
LT4356DE  
11  
7
12  
8
+
IN  
OUT  
R5  
249k  
SHDN  
FLT  
9
EN  
GND  
10  
TMR  
*DIODES INC.  
4356 TA09  
1
C
TMR  
0.1μF  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1641-1/LT1641-2 Positive High Voltage Hot Swap™ Controllers  
Active Current Limiting, Supplies From 9V to 80V  
ThinSOT™ Package, 2.7V to 28V  
LTC1696  
LTC1735  
Overvoltage Protection Controller  
High Efficiency Synchronous Step-Down  
Switching Regulator  
Output Fault Protection, 16-Pin SSOP  
LTC1778  
No R  
™ Wide Input Range Synchronous  
Up to 97% Efficiency, 4V ≤ V ≤ 36V, 0.8V ≤ V  
≤ (0.9)(V ),  
OUT IN  
SENSE  
IN  
Step-Down Controller  
I
Up to 20A  
OUT  
LTC2909  
Triple/Dual Inputs UV/OV Negative Monitor  
Single/Dual UV/OV Voltage Monitor  
Quad UV/OV Monitor  
Pin Selectable Input Polarity Allows Negative and OV Monitoring  
Ads UV and OV Trip Values, 1.5% Threshold Accuracy  
For Positive and Negative Supplies  
LTC2912/LTC2913  
LTC2914  
LTC3727/LTC3727-1 2-Phase, Dual, Synchronous Controller  
LTC3827/LTC3827-1 Low I , Dual, Synchronous Controller  
4V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 14V  
IN  
OUT  
OUT  
4V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 10V, 80μA Quiescent Current  
Q
IN  
LTC3835/LTC3835-1 Low I , Synchronous Step-Down Controller  
Single Channel LTC3827/LTC3827-1  
4V ≤ V ≤ 60V, 1.23V ≤ V ≤ 36V, 120μA Quiescent Current  
Q
LT3845  
LT3850  
Low I , Synchronous Step-Down Controller  
Q
IN  
OUT  
Dual, 550kHz, 2-Phase Sychronous Step-Down  
Controller  
Dual 180° Phased Controllers, V 4V to 24V, 97% Duty Cycle, 4mm × 4mm  
IN  
QFN-28, SSOP-28 Packages  
LT4256  
Positive 48V Hot Swap Controller with  
Open-Circuit Detect  
Foldback Current Limiting, Open-Circuit and Overcurrent Fault Output, Up to  
80V Supply  
LTC4260  
Positive High Voltage Hot Swap Controller with  
Wide Operating Range 8.5V to 80V  
2
ADC and I C  
LTC4352  
Ideal MOSFET ORing Diode  
External N-channel MOSFETs Replace ORing Diodes, 0V to 18V Operation  
Controls Two N-channel MOSFETs, 1μs Turn-Off, 80V Operation  
Controls Two N-channel MOSFETs, 0.5μs Turn-Off, 80V Operation  
LTC4354  
Negative Voltage Diode-OR Controller  
Positive Voltage Diode-OR Controller  
LTC4355  
Hot Swap, No R  
and ThinSOT are trademarks of Linear Technology Corporation.  
SENSE  
4356fa  
LT 0510 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT4356-3

Surge Stopper with Fault Latchoff
Linear

LT4356CDE-1

Overvoltage Protection Regulator and Inrush Limiter
Linear

LT4356CDE-1#PBF

LT4356-1 and LT4356-2 - Surge Stopper; Package: DFN; Pins: 12; Temperature Range: 0°C to 70°C
Linear

LT4356CDE-1#TR

暂无描述
Linear

LT4356CDE-1-PBF

Overvoltage Protection Regulator and Inrush Limiter
Linear

LT4356CDE-1-TR

Overvoltage Protection Regulator and Inrush Limiter
Linear

LT4356CDE-1-TRPBF

Overvoltage Protection Regulator and Inrush Limiter
Linear

LT4356CDE-2

LT4356-1 and LT4356-2 - Surge Stopper; Package: DFN; Pins: 12; Temperature Range: 0°C to 70°C
Linear

LT4356CDE-2#PBF

LT4356-1 and LT4356-2 - Surge Stopper; Package: DFN; Pins: 12; Temperature Range: 0°C to 70°C
Linear

LT4356CDE-2#TR

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO12, 4 X 3 MM, PLASTIC, MO-229WGED, DFN-12, Power Management Circuit
Linear

LT4356CDE-2#TRPBF

LT4356-1 and LT4356-2 - Surge Stopper; Package: DFN; Pins: 12; Temperature Range: 0°C to 70°C
Linear

LT4356CDE-3

Surge Stopper with Fault Latchoff
Linear